Towards solving the mystery of epsilon Aurigae

Brian Kloppenborg

University of Denver

Wednesday, April 27, 2011
Outline

1 Background
 - What is epsilon Aurigae?
 - No. What IS epsilon Aurigae, really?
 - Supporting Evidence

2 Dissertation Work
 - My Contribution to the story

3 Assembling the results
 - Is that your final answer?
What is \(\epsilon \) Aurigae

- Single line spectroscopic eclipsing binary star system
- Eclipses first “discovered” in 1821
- 27.1 year period established in 1903
- Anomalously long, 21-month, primary eclipse
- No detectable secondary eclipse
A swarm of meteorites
(10-100 µm)
(Ludendorff, 1903)
ε Aurigae

- A swarm of meteorites

 \((10-100 \, \mu m) \)

 (Ludendorff, 1903)

- Largest star in the universe

 (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

Image Credit: Kuiper et. al. 1937
ε Aurigae

- **A swarm of meteroites**

 \[(10-100 \, \mu m)\]

 (Ludendorff, 1903)

- **Largest star in the universe**

 (Kuiper, G. P. and Struve, O. and Stromgren, B.; 1937)

- **A disk**

 (Huang, 1965)

Image Credit: Huang, 1965
ε Aurigae

- A swarm of meteroites

 \[(10-100 \mu m)\]

 (Ludendorff, 1903)

- Largest star in the universe

 (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

- A disk

 (Huang, 1965)

- A black hole

 (Cameron, 1971)

Image Credit: Dan Weeks
ε Aurigae

- A swarm of meteroites
 (10-100 µm)
 (Ludendorff, 1903)

- Largest star in the universe
 (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

- A disk
 (Huang, 1965)

- A black hole
 (Cameron, 1971)

- High mass system
 (review: Webbink, 1985)

Image Credit: Carroll, S. et. al 1991
ε Aurigae

- A swarm of meteroites
 \((10-100 \mu m) \)
 (Ludendorff, 1903)

- Largest star in the universe
 (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

- A disk
 (Huang, 1965)

- A black hole
 (Cameron, 1971)

- High mass system
 (review: Webbink, 1985)

- Binary or a trinary?
 (Lissauer, 1984)

Image Credit: M. Carroll and Robert Stencel 2008
ε Aurigae

- A swarm of meteorites
 (10-100 \(\mu m \))
 (Ludendorff, 1903)

- Largest star in the universe
 (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

- A disk
 (Huang, 1965)

- A black hole
 (Cameron, 1971)

- High mass system
 (review: Webbink, 1985)

- Binary or a trinary?
 (Lissauer, 1984)

- Low mass system
 (Webbink, 1985)

Image Credit: Brian Thieme
Background
Dissertation Work
Assembling the results

What is epsilon Aurigae?
No. *What IS* epsilon Aurigae, really?
Supporting Evidence

ε Aur on the HR diagram

ε Aur F-star Stats:
- T: 7750 K
- R: 135 R☉
- L: > 10⁴

Image Courtesy of the Museum of Flight

Towards solving the mystery of epsilon Aurigae
Case 1: F-Supergiant

F-type Supergiant Properties
- $M_0 > 10M_\odot$
- $[Na/Fe] > 0$ (overabundance)
- Stable photometrically
- Low surface gravity
- Disk would be leftovers from system formation
Case 2: post-AGB

post-AGB properties:

- $M_0 < 8M_\odot$
- Advanced (s-) processing of materials
- Dust Production
- $\Delta P/\Delta T_{\text{eff}} = 0.047$ days / K
- Disk is debris from mass loss on AGB.
Spectroscopic Support?

- Sadakane (F-star):
 Spectral Analysis: Supergiant

- Hinkle & Simon (Disk):
 \(^{12}CO / ^{13}CO \): Post-AGB

\(\epsilon \) Aur abundances compared to HD 81471 (A7 lab supergiant) (Sadakane 2010)
Photometric Variability

Kloppenborg et. al. (2010)
Hypothesis

The F-star is not a massive supergiant as presently assumed, but instead is a lower-mass post-AGB star that has recently (in the evolutionary sense) lost a few solar masses of material which has largely ended up in and around the B-type companion and in a circumbinary disk.
Towards proving the hypothesis

1. Establish that the disk is not composed of copious amounts of gas and is more akin to debris-disks than YSOs,
2. Find a change in period and temperature over 100 years of observations which is indicative of post-AGB stars,
3. Find s-process elements in sufficient quantities to establish the post-AGB nature of the system.
Interferometry

<table>
<thead>
<tr>
<th></th>
<th>2009-11</th>
<th>2009-12</th>
<th>2010-02</th>
<th>2010-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSMEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSMEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Towards solving the mystery of epsilon Aurigae

Brian Kloppenborg

Dissertation Work
Assembling the results

My Contribution to the story
What’s real, what’s fake?

(Kloppenborg et. al 2011)
Preliminary from OIFITS-sim

<table>
<thead>
<tr>
<th>Year</th>
<th>Data w/ BS-MEM</th>
<th>Best Fit Model</th>
<th>Sampled Model w/ BS-MEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial results in Kloppenborg et al. 2011, OIFITS-sim publication upcoming.

Brian Kloppenborg Towards solving the mystery of epsilon Aurigae
IR Spectroscopy

ϵ Aur IR Spectroscopy (upcoming, Stencel, Kloppenborg et. al 2011)
Long-Term photometry

ϵ Aurigae Phase

JD - 2445000

Towards solving the mystery of epsilon Aurigae

Brian Kloppenborg
Re-solving the orbital solution

- All published (complete) orbits inconsistent

Kloppenborg (2011)
Re-solving the orbital solution

- All published (complete) orbits inconsistent
- Best astrometric data 1939.82 - 1977.1302
- Incorrect assumptions corrupted solution.

Kloppenborg (2011)
Re-solving the orbital solution

- All published (complete) orbits inconsistent
- Best astrometric data 1939.82 - 1977.1302
- Incorrect assumptions corrupted solution.

Kloppenborg (2011)
Re-solving the orbital solution

- All published (complete) orbits inconsistent
- Best astrometric data 1939.82 - 1977.1302
- Incorrect assumptions corrupted solution.
- An accurate distance resolves the entire problem.

Kloppenborg (2011)
A possible conclusion

- Disk: YSO or YS-No
 - $^{12}CO /^{13}CO$ is indicative of debris disks, not YSOs
 - If system is at < 625 pc, scale height agrees with debris disk
- Change in T_{eff} or P
 - Qualitative agreement with post-AGB interpretation ($\downarrow P$, unknown ΔT_{eff})
- s-process elements
 - Work completed by other folks.
- Orbit Work
 - Initial results looking good
 - Full analysis under way.

Towards solving the mystery of epsilon Aurigae